Examen du 1/02/2006

Durée de l'épreuve : 2 heures

L'usage des calculatrices et des documents est interdit. Les quatre exercices sont indépendants. Le sujet est recto-verso. Le barème est donné à titre indicatif. Les réponses doivent être justifiées.

Exercice I (3 points)

La série

$$\sum_{n=1}^{+\infty} \frac{n}{\sqrt{(n-1)!}}$$

est-elle convergente?

Exercice II (6 points)

Soit (u_n) la suite définie par

$$u_n = \frac{1}{1 + 2^n}$$

- 1. En utilisant la définition de la limite, montrer que $\lim u_n = 0$
- **2.** Le fait que (u_n) converge vers 0 implique-t'il que $\sum_{n=0}^{+\infty} u_n$ converge ? Est-ce une condition nécessaire pour que $\sum_{n=0}^{+\infty} u_n$ converge.
- **3.** Quelle est la nature de $\sum_{n=0}^{+\infty} u_n$?

Exercice III (5 points)

Soit $\alpha \in \mathbb{R}$

1. Discuter selon α , la convergence de la série

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^{\alpha}+1}$$

2. Pour quelle(s) valeur(s) de α , cette série est-elle absolument convergente ?

Exercice IV (6 points)

On considère la suite (u_n) définie par

$$\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{1}{2}u_n + \frac{1}{2} \end{cases}$$

- ${\bf 1.}\,$ Au moyen d'un graphe, donnez une valeur approchée des 5 premiers termes de la suite. Conjecturez la limite.
- **2.** Démontrer que pour tout entier naturel n on a $u_n \in [0,1]$.
- **3.** Montrer que (u_n) est croissante
- 4. En déduire que (u_n) est convergente et déterminez la limite.