Devoir 2

Corrigé

Exercice I

Commençons par démontrer que $2^n \ge n^3$ pour $n \ge 10$. Notons (\mathcal{H}_n) l'hypothèse de récurrence $2^n > n^3$.

- (\mathcal{H}_{10}) est vraie puisque $1024 \geq 1000$.
- Supposons (\mathcal{H}_n) vraie alors $2^n \geq n^3$ donc $2^{n+1} \geq 2n^3 \geq (\sqrt[3]{2}n)^3$. Or $n \geq 10$ entraine $\sqrt[3]{2}n \geq n+1$ donc $2^{n+1} \geq (n+1)^3$ ce qui établit (\mathcal{H}_{n+1}) .

Ainsi pour $n \ge 10$ on a $2^n \ge n^3$.

Il en résulte que $n \geq 10$ entraine $\frac{1}{2^n} \leq \frac{1}{n^3}$ et donc que $\frac{n}{2^n} \leq \frac{1}{n^2}$. Or $\frac{n}{2^n}$ et $\frac{1}{n^2}$ sont des suites positives. La série $\sum_{n=10}^{+\infty}$ est convergente puisque de Riemann avec s=2>1. Le théorème de comparaison permet d'affirmer que $\sum_{n=10}^{+\infty}$ converge. Comme la nature d'une série n'est pas affectée par ses premiers termes, il en $^{\circ}$ esulte que $\sum_{n=0}^{+\infty} u_n$ converge.

Exercice II

1. Considérons les somme de N-q+1 termes d'une suite géométrique dont le premier terme est $(\frac{1}{2})^q$. On a

$$\sum_{n=q}^{N} \left(\frac{1}{2}\right)^n = \frac{1}{2^q} \frac{1 - \left(\frac{1}{2}\right)^{N-q+1}}{1 - \frac{1}{2}}$$

ainsi

$$\sum_{n=q}^{N} \left(\frac{1}{2}\right)^n = \frac{1}{2^{q+1}} \left(1 - \left(\frac{1}{2}\right)^{N-q+1}\right)$$

donc

$$\sum_{n=q}^{N} \left(\frac{1}{2}\right)^n = \frac{1}{2^{q-1}} - \frac{1}{2^N}$$

- **2.** Soit (\mathcal{H}_N) l'hypothèse $S_N = \sum_{q=1}^N \sum_{n=q}^N \frac{1}{2^n}$.
 - (\mathcal{H}_1) est vraie puisque

$$S_1 = \sum_{n=0}^{1} u_n = u_0 + u_1 = \frac{1}{2} = \sum_{n=1}^{1} \sum_{n=0}^{1} \frac{1}{2^n}$$

• Supposons (\mathcal{H}_N) vraie alors $S_N = \sum_{q=1}^N \sum_{n=q}^N \frac{1}{2^n}$ ce qui implique les lignes suivantes

$$S_{N} + \frac{N+1}{2^{N+1}} = \sum_{q=1}^{N} \sum_{n=q}^{N} \frac{1}{2^{n}} + \frac{N+1}{2^{N+1}}$$

$$S_{N+1} = \sum_{q=1}^{N} \sum_{n=q}^{N} \frac{1}{2^{n}} + \sum_{q=1}^{N} \frac{1}{2^{N+1}} + \frac{1}{2^{N+1}}$$

$$S_{N+1} = \sum_{q=1}^{N} \sum_{n=q}^{N} \frac{1}{2^{n}} + \sum_{q=1}^{N} \frac{1}{2^{N+1}} + \frac{1}{2^{N+1}}$$

$$S_{N+1} = \sum_{q=1}^{N} \left(\sum_{n=q}^{N} \frac{1}{2^{n}} + \frac{1}{2^{N+1}} \right) + \sum_{q=1}^{N} \frac{1}{2^{N+1}}$$

$$S_{N+1} = \sum_{q=1}^{N} \sum_{n=q}^{N+1} \frac{1}{2^{n}} + \sum_{q=1}^{N} \frac{1}{2^{N+1}}$$

$$S_{N+1} = \sum_{q=1}^{N+1} \sum_{n=q}^{N+1} \frac{1}{2^{n}}$$

ce qui implique (\mathcal{H}_{N+1})

Cette récurrence établit le résultat.

3. En vertu de la question 2, on a

$$S_N = \sum_{q=1}^{N} \sum_{n=q}^{N} \frac{1}{2^n}$$

En vertu de la question 1, on a

$$S_N = \sum_{q=1}^{N} \left(\frac{1}{2^{q-1}} - \frac{1}{2^N} \right)$$

donc

$$S_N = 2\sum_{q=1}^{N} \left(\frac{1}{2}\right)^q - \frac{N}{2^N}$$

la somme des N termes de la suite géométrie de raison 1/2 et de premier terme 1/2 donne

$$S_N = 2\frac{1}{2} \frac{1 - \frac{1}{2^N}}{1 - \frac{1}{2}} - \frac{N}{2^N}$$

ce qui donne

$$S_N = 2 - \frac{1}{2^{N-1}} - \frac{N}{2^N}$$

4. On a $\lim_{N\to+\infty} S_N = 2$ donc la série converge et

$$\sum_{n=0}^{+\infty} u_n = 2$$

Exercice III

1. La fonction $x \mapsto nx^{n-1}$ est continue donc intégrable, les primitives sont $x \mapsto x^n + C$, où C est une constante. Il s'en suit que les primitives de f_N sont

$$x \mapsto \sum_{n=1}^{N} x^n + C$$

Le réel C est une constante (somme des constantes apparaissant précédemment). On a $x \neq 1$, en appliquant la formule de la somme des N termes de la suite gémoétrique de raison x et de premier terme x, il vient que les primitives de f_N sont

$$x \mapsto x \frac{1 - x^N}{1 - x} + C$$

c'est-à-dire

$$x \mapsto \frac{x^{N+1} - x}{x - 1} + C$$

cette fonction vaut C en 0, la primitive de f_n qui s'annule en 0 est donc F_N définie par

$$F_N(x) = \frac{x^{N+1} - x}{x - 1}$$

2. On a $f_N = F'_N$ donc

$$f_N(x) = \frac{[(N+1)x^N - 1](x-1) - (x^{N+1} - x)}{(x-1)^2} = \frac{x^N [Nx - (N+1)] + 1}{(x-1)^2}$$

3. On a

$$\frac{1}{2}f_n\left(\frac{1}{2}\right) = \frac{1}{2}\sum_{n=1}^{N} \frac{n}{2^{n-1}} = \sum_{n=1}^{N} \frac{n}{2^n} = S_N$$

En verdu de la quesiton précédente, on a donc

$$S_N = \frac{1}{2} \frac{\frac{1}{2^N} \left[\frac{1}{2} N - (N+1) \right] + 1}{\frac{1}{4}} = -\frac{2}{2^N} \left[\frac{1}{2} N + 1 \right] + 2$$

On a montré dans l'exercice I que $2^N \geq N^3$ donc

$$\lim_{N\to +\infty}\frac{2}{2^N}\left[\frac{1}{2}N+1\right]=0$$

donc $\lim_{N\to+\infty} S_N = 2$, ainsi la série converge et

$$\sum_{n=0}^{+\infty} u_n = 2$$