Devoir 4

A rendre le 04/04/2005

Exercice I

Soit $m \in \mathbb{N}$, on note

$$A_m = \left\{ \frac{mn}{m+n}, \ n \in \mathbb{N}^* \right\}$$

- **1.** Montrer que $A_m \subset [0, m]$.
- **2.** L'ensemble A_0 est-il un ouvert ? Est-il un fermé ?
- 3. Repréenter graphiquement A_m lorsque m=1, m=2 et m=5.
- 4. L'ensemble A_m est-il fermé lorsque $m \neq 0$
- **5.** A-t'on $m \in A'_m$ lorsque $m \neq 0$?

Exercice II

Considérons

$$E = \bigcup_{m \in \mathbb{N}} A_m$$

- **1.** Montrer que $\mathbb{N}^* \subset E'$
- **2.** Montrer que $E' \subset [0, +\infty[$
- 3. Soit $x \in \mathbb{R}^+ \setminus \mathbb{N}$. Notons $d = \frac{1}{2} \min\{x \mathbf{E}(x), \mathbf{E}(x) + 1 x, x\}$
 - **a.** Montrer que si $m \leq E(x)$ alors $A_m \cap]x d, x + d[= \emptyset.$
 - **b.** Montrer que si $m \ge E(x) + 1$ alors $A_m \cap]x d, x + d[$ est fini.
 - c. Montrer qu'il existe un entier M tel que m > M entraine

$$\left| \frac{(x-d)m}{m-(x-d)}, \frac{(x+d)m}{m-(x+d)} \right| \cap \mathbb{N} = \emptyset$$

4. En déduire que $E' = \mathbb{N}^*$.

Exercice III

- 1. L'ensemble E est-il ouvert ?
- **2.** Montrer que $\mathbb{N} \subset E$.
- 3. Quelle est l'adhérence de E ? L'ensemble E est-il fermé ?