Devoir 4

A rendre le 1/04/2004

Exercice I

Soit $m \in \mathbb{R}$ et (D_m) la droite d'équation

$$(2m-1)x + (m-1)y + m = 0$$

On considère $\mathcal{F} = \{(D_m), m \in \mathbb{R}\}$ la famille de ces droites.

- 1. Montrer que toutes les droites de \mathcal{F} sont sécantes en un point $I=(x_I,y_I)$ dont on déterminera les coordonnées.
- **2.** Tracer quelques droites D_m pour $m \in]\frac{1}{2}, 1[$.
- **3.** Soit $(\alpha, \beta) \in \mathbb{R}^2$ tels que $\frac{1}{2} < \alpha < \beta < 1$. On note

$$S_{\alpha,\beta} = \left\{ (x,y) \in \mathbb{R}^2, \text{ t.q. } \left\{ \begin{array}{l} (2\alpha - 1)x + (\alpha - 1)y + \alpha < 0 \\ (2\beta - 1)x + (\beta - 1)y + \beta > 0 \end{array} \right. \text{ et } x > x_I \right\}$$

Représenter graphiquement $S_{\alpha,\beta}$

4. Avec les notations de la question précédente, montrer que $S_{\alpha,\beta} \cap (\mathbb{N}^* \times \mathbb{N}^*) \neq \emptyset$.

Exercice II

On considère l'ensemble

$$A = \left\{ \frac{p+q}{2p+q+1}, \ p \in \mathbb{N}^*, \ q \in \mathbb{N}^* \right\}$$

- **1.** Montrer que $A \subset [\frac{1}{2}, 1]$.
- **2.** Montrer que $\overline{A} \subset [\frac{1}{2}, 1]$.
- 3. Soit α et β deux réels tels que $\frac{1}{2} < \alpha < \beta < 1$ et p et q deux entiers naturels non nuls. Montrer que

$$\frac{p+q}{2p+q+1}\in]\alpha,\beta[$$

équivaut à

$$\left\{ \begin{array}{l} (2\alpha-1)p+(\alpha-1)q+\alpha<0 \\ (2\beta-1)p+(\beta-1)q+\beta>0 \end{array} \right.$$

4. Soit $a \in]\frac{1}{2}, 1[$. Montrer que

$$\forall \varepsilon > 0, \ A \cap]a - \varepsilon, a + \varepsilon [\neq \emptyset$$

5. En déduire \overline{A} .