Interrogation du 13/3/2003

Durée de l'épreuve : 1 heure 15

L'usage des calculatrices et des documents est interdit. Les quatre exercices sont indépendants. Le barème est donné à titre indicatif. Vos réponses doivent être justifiées.

Exercice I (5 points)

Determiner la limite des suites (u_n) suivantes.

1.
$$u_n = \frac{1}{\sqrt{n^2 + 2} - \sqrt{n^2 + 1}}$$

$$2. \quad u_n = n\cos\left(\frac{1}{n}\right) - n$$

Exercice II (5 points)

Soit (u_n) et (v_n) deux suites qui convergent respectivement vers l et l'. En utilisant la définition de la limite, montrez que la suite (w_n) , définie par $w_n = u_n + 2v_n$, converge vers l + 2l'.

Exercice III (5 points)

Soit $a \in \mathbb{R} \setminus \{1\}$ et $b \in \mathbb{R}$. Considérons $(u_n)_{n \in \mathbb{N}}$ la suite définie par son premier terme $u_0 \in \mathbb{R}$ et la relation de récurrence

$$u_{n+1} = au_n + b$$

Determiner le terme général de la suite (u_n) en fonction de u_0 , a et b.

Exercice IV (5 points)

Soit $s \in \mathbb{N}^*$ un entier et

$$A_s = \left\{ \frac{1}{n}, \ n \in [1, s] \right\}$$

Montrer qu'une suite convergente d'éléments de A_4 est constante à partir d'un certain rang. Ce résultat peut-il être généralisé à A_s pour $s \in \mathbb{N}^*$ quelconque ?