Devoir 2

A rendre le 15/10/2002

Soit $n \geq 2$ un entier. On se donne n points (x_i, y_i) de \mathbb{R}^2 , et on suppose que ces points n'ont pas tous la même abscisse. Pour tout $s \in \mathbb{N}^*$ on note

$$\overline{x^s} = \frac{1}{n} \sum_{i=1}^n x_i^s \qquad \overline{x^s y} = \frac{1}{n} \sum_{i=1}^n x_i^s y_i \qquad \overline{y} = \frac{1}{n} \sum_{i=1}^n y_i$$

Exercice I

Soit

$$f(a,b) = \sum_{i=1}^{n} (y_i - ax_i - b)^2$$

- 1. Démontrer que f est convexe sur \mathbb{R}^2
- **2.** Minimiser f sur \mathbb{R}^2
- **3.** Trouver la droite "des moindres carrés" du nuage de points $\{(x_i, y_i)\}$.
- **4.** Appliquer au nuage de points $\{(1,2); (2,3); (0,-1)\}.$

Exercice II

Le but de cet exercice est de trouver des réels a, b et c tels que la parabole d'équation $y = ax^2 + bx + c$ minimise

$$f(a,b,c) = \sum_{i=1}^{n} (y_i - (ax_i^2 + bx_i + c))^2$$

On supposera que la matrice

$$M = \begin{pmatrix} 1 & \overline{x} & \overline{x^2} \\ \overline{x} & \overline{x^2} & \overline{x^3} \\ \overline{x^2} & \overline{x^3} & \overline{x^4} \end{pmatrix}$$

est inversible

- **1.** Montrer que f est une fonction convexe sur \mathbb{R}^3 .
- 2. Trouver a, b et c tels que $y = ax^2 + bx + c$ est l'équation de la parabole cherchée.
- **3.** Considérons n=4 et les points $M_1(-3,-4)$, $M_2(-1,2)$, $M_3(1,2)$ et $M_4(3,0)$. Trouver la parabole d'équation $y=ax^2+bx+c$ telle que $\sum_{i=1}^4(y_i-(ax_i^2+bx_i+c))^2$ est le plus petit possible.

Exercice III

Soit $p \geq 1$ un entier et

$$P(x) = \sum_{j=0}^{p} a_j x^j$$

Le but de cet exercice est de trouver les p+1 réels a_j que le polynôme P minimise $\sum_{i=1}^n (y_i - P(x_i))^2$. Considérons

$$f: \mathbb{R}^{p+1} \to \mathbb{R}$$

 $(a_0, \dots, a_p) \mapsto \sum_{i=1}^n (y_i - P(x_i))^2$

On pourra supposer l'inversibilité de $l'alter\ ego$ de la matrice M de l'exercice II.

- 1. Montrer que f est une fonction convexe sur \mathbb{R}^{p+1} .
- **2.** Trouver le polynôme P tel que $\sum_{i=1}^{n} (y_i P(x_i))^2$ est le plus petit possible. On pourra exprimer le résultat sous forme $A = M^{-1}Y$ ou A est le vecteur constitué des a_j , M une matrice à determiner et Y un vecteur à determiner.
- 3. Vérifier que l'on retrouve les résultats des exercices 1 et 2 lorsque p=1 et p=2.